While you're up, print me a solar cell
New MIT-developed materials make it possible to produce photovoltaic cells on paper or fabric, nearly as simply as printing a document.
Almost as cheaply and easily as printing a photo on your inkjet, an inexpensive, simple solar cell has been created on that flimsy sheet, formed from special "inks" deposited on the paper. You can even fold it up to slip into a pocket, then unfold it and watch it generating electricity again in the sunlight.
The new technology, developed by a team of researchers at MIT, is reported in a paper in the journal Advanced Materials, published online July 8. The paper is co-authored by Karen Gleason, the Alexander and I. Michael Kasser Professor of Chemical Engineering; Professor of Electrical Engineering Vladimir Bulović; graduate student Miles Barr; and six other students and postdocs. The work was supported by the Eni-MIT Alliance Solar Frontiers Program and the National Science Foundation.
The technique represents a major departure from the systems used until now to create most solar cells, which require exposing the substrates to potentially damaging conditions, either in the form of liquids or high temperatures. The new printing process uses vapors, not liquids, and temperatures less than 120 degrees Celsius. These "gentle" conditions make it possible to use ordinary untreated paper, cloth or plastic as the substrate on which the solar cells can be printed.
It is, to be sure, a bit more complex than just printing out a term paper. In order to create an array of photovoltaic cells on the paper, five layers of material need to be deposited onto the same sheet of paper in successive passes, using a mask (also made of paper) to form the patterns of cells on the surface. And the process has to take place in a vacuum chamber.
The basic process is essentially the same as the one used to make the silvery lining in your bag of potato chips: a vapor-deposition process that can be carried out inexpensively on a vast commercial scale.
The resilient solar cells still function even when folded up into a paper airplane. In their paper, the MIT researchers also describe printing a solar cell on a sheet of PET plastic (a thinner version of the material used for soda bottles) and then folding and unfolding it 1,000 times, with no significant loss of performance. By contrast, a commercially produced solar cell on the same material failed after a single folding.
"We have demonstrated quite thoroughly the robustness of this technology," Bulović says. In addition, because of the low weight of the paper or plastic substrate compared to conventional glass or other materials, "we think we can fabricate scalable solar cells that can reach record-high watts-per-kilogram performance. For solar cells with such properties, a number of technological applications open up," he says. For example, in remote developing-world locations, weight makes a big difference in how many cells could be delivered in a given load.
Gleason adds, "Often people talk about deposition on a flexible device — but then they don't flex it, to actually demonstrate" that it can survive the stress. In this case, in addition to the folding tests, the MIT team tried other tests of the device's robustness. For example, she says, they took a finished paper solar cell and ran it through a laser printer — printing on top of the photovoltaic surface, subjecting it to the high temperature of the toner-fusing step — and demonstrated that it still worked. Test cells the group produced last year still work, demonstrating their long shelf life.
Read More...
http://web.mit.edu/newsoffice/2011/printable-solar-cells-0711.html
- Print me a solar cell - Printable Foldable Solar Cells
- Printable solar cells that can be folded up when not in use - Hack a Day
- While you're up, print me a solar cell - MIT News Office
- Dynamic folding of a paper solar cell circuit - YouTube
today's news
Double duty
A computational biologist and physician, Collin Stultz takes a unique approach to studying diseases that could lead to new treatments.
A novel way to concentrate sun's heat
December 2, 2011
Video: Mapping the future
December 1, 2011
At a crossroads
November 30, 2011
similar stories
A novel way to concentrate sun's heat
December 2, 2011
Student project identifies improvements for campus PVs
November 30, 2011
Shining brightly
October 26, 2011
A new approach to solar power
October 21, 2011
Graphene shows unusual thermoelectric response to light
October 7, 2011
No comments:
Post a Comment